TOM LXIII

Труды Всесоюзного научно-исследовательского института морского рыбного хозяйства и океанографии (ВНИРО)

1967

УДК 664.951.8.022.1.001.5

АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКА-КОАГУЛЯТА КРИЛЯ

Н. Е. НИКОЛАЕВА

В лаборатории технологии беспозвоночных и водорослей ВНИРО изучается питательная ценность мяса различных ракообразных. Кроме креветок, лангустов, омаров, мясо которых ценится во всем мире как давно признанный деликатес, мы исследовали мелкого рачка — криля (Euphausia superba), которым питаются морские млекопитающие и рыбы.

Мясо крупных ракообразных (креветок, крабов, лангустов и омаров) освобождают из панциря вручную или машиной, чаще всего после варки, так как некоторые белки мяса ракообразных в сыром виде полужидкие.

Криль очень нежный и скоропортящийся рачок. Белки его мяса преимущественно полужидкие.

В панцире брюшка криля заключено всего около 0,5 г мяса, которое очень трудно извлечь. Поэтому криль до последнего времени оставался непромысловым объектом.

В первом антарктическом рейсе научно-поискового судна «Академик Книпович» (1964—1965 гг.) инженер-технолог М. И. Крючкова предложила эффективный способ освобождения мяса криля от хитинового покрова и приготовления из него натурального пищевого белкового продукта; она приготовила пастообразный продукт (без каких-либо пищевых добавок) розовато-оранжевого цвета, обладающий приятным сладковатым вкусом, напоминающим вкус креветок, и названный «Белок-коагулят криля».

Белок-коагулят расфасовали в стеклянные банки, стерилизовали и хранили при температуре 5—7°С. Его можно добавлять в салаты и другие пикантные кушанья.

Исследовали белок-коагулят одной партии, его химический состав был следующим (в %)*: вода — 73,5; жир — 6,9; зола — 1,7; сахара — 1,3; общий азот — 2,7; белок (по разности) — 16,6. Как видно, в данном продукте находится довольно много сахаров. Известно, что белки ракообразных часто связаны с сахарами, образуя глюкопротеины, которые, по всей вероятности, придают мясу сладковатый вкус. Так, по Боргстрому [2] белки омаров содержат 2,2% сахаров, представляющих собой в

* Эти анализы выполнены инженером Ю. Г. Вороновой и техниками Л. В. Сысоевой и А. Д. Чумаковой.

основном смесь глюкозы (три части) и фруктозы (восемь частей). Белки краба содержат 2,8% сахаров, из которых на долю глюкозы приходится четыре части, на долю фруктозы — одна часть.

Аминокислотный состав белков белка-коагулята определяли метолом распределительной хроматографии на бумаге. Эта методика, описанная нами ранее [1], предусматривает трех-, четырехразовую обработку исследуемого продукта спиртом с тем, чтобы приготовить для последующего исследования безбелковый экстракт свободных аминокислот продукта и препарат белков, по возможности очищенных от посторонних небелковых веществ.

Белковый препарат, приготовленный из крилевого белка-коагулята, представлял собой сухой светлый порошок розоватого цвета. Выход его составил 17,1% от веса белка-коагулята. Его химический состав (в %)*: вода — 9,6; жир — 0,4; зола — 5,9; общий азот — 13,3; белок (по разности) — 84,1.

Для определения аминокислотного состава белковые препараты подвергали гидролизу соляной кислотой.

Полученные гидролизаты и безбелковый экстракт использовали для анализа.

Аминокислоты разделяли на одномерных хроматограммах при нисходящем движении растворителей, как описано нами в статье «Аминокислотный состав белков кальмара» (стр. 158 данного сборника). На хроматограммах проявились 14 пятен аминокислот.

Таблица 1

al north Standing.

tin

	I	<u> </u>				
Аминокислота			оши	бка	В % от веса	≝B %7or Beca
	пределы	среднее	абсолют- ная	относи- тельная, %	белкового препарата	€ белка- коагулят;
Лизин	11,80—14,50	12,8	±0,87	6,8	10,74	1,84
Аргинин	8,08-10,20	9,1	$\pm 0,46$	5,1	7,63	1.30
Греонин	6,18-7,70	7,0	$\pm 0,32$	4,6	5,87	1,00
Валин	8,36-10,80	9,4	±0,75	8,0	7,88	1,35
Лейцины	15,40-17,05	16,0	± 0.59	3,7	13,42	2,29
Фенилаланин	6,62-6,98	6,8	±0,16	2,4	5.70	0.97
Аланин	6,14-7,25	6,7	+0,35	5,2	5.62	0,96
Глютаминовая	12,40-14,22	13,4	+0.61	4,6	11.25	1,92
Аспарагиновая	11,20-11,70	11,5	+0.18	1,6	9,65	1,65
Серин	1,84-3,32	2,7	±0.51	18.9	2,26	0,39
ликокол	6,40-8,24	7,3	$\pm 0,56$	7.7	6,12	1,05
Гирозин	6,44-8,12	7,0	±0,58	8,3	5,87	1,00
Цистин	3,394,09	3,8	±0,20	5,3	3,18	0,54

Содержание аминокислот в белке-коагулята криля

Результаты количественного определения аминокислот в белковом препарате, приготовленном из крилевого белка-коагулята, приведены в табл. 1. Для сравнения приведены также данные Боргстрома [2] о содержании некоторых аминокислот в белках бомбейских и тихоокеанских креветок и омаров и некоторых пищевых продуктов (табл. 2).

* Анализ выполнен инж. Ю. Г. Вороновой и техниками Л. В. Сысоевой и А. Д. Чумаковой.

162

<u>50 j</u>

Таблица 2

Аминокислотный состав белков креветок, омаров и некоторых пищевых продуктов

	Бомбейские*		Тихоокеанские		Пищевые продукты		
Аминокислота	креветки крупные	омары	креветки крупные	омары	креветки	треска	цыпленок (белое мясо) ы (
Лизин Аргинин	18,5 8,3 4,6 4,1 19,9 14,6 — 1,0 1,4 4,6 1,6 0,4	$ \begin{array}{c} 17.6 \\ 7.2 \\ 5.3 \\ 2.9 \\ 15.6 \\ 2.7 \\ - \\ - \\ 0.8 \\ 1.5 \\ 2.2 \\ 1.2 \\ 0.2 \\ \end{array} $	9,4 9,0 4,1 4,4 12,4 4,4 17,5 11,7 4,2 4,7 4,1 1,1 2,8 1,0	9,57,44,512,74,75,912,34,94,64,11,33,22,10,9	$ \begin{array}{c} 10,0\\ 13,2\\ 2,9\\ -\\ 2,5\\ -\\ -\\ 3,3\\ -\\ 2,3\\ 0,7\\ 2,0\\ 3,1\\ 1,1\\ \end{array} $	$ \begin{array}{c} 10,1\\12,6\\3,3\\-\\-\\2,3\\-\\-\\-\\4,1\\-\\-\\2,2\\0,8\\2,2\\3,5\\1,1\end{array} $	$ \begin{array}{c} 10,1\\13,9\\3,4\\-\\2,0\\-\\-\\3,9\\-\\2,1\\0,6\\2,0\\4,0\\1,1\end{array} $

* Грамм в 100 г белка, пересчитано к 16% азота.

Как видно из табл. 1 и 2, белок-коагулят криля по аминокислотному составу не уступает таким высокоценным пищевым продуктам, как треска, цыпленок и ракообразные (креветки, омары), а по содержанию некоторых аминокислот, например треонина, валина, фенилаланина, гликокола, тирозина, превосходит эти продукты. Следует отметить, что в белке-коагуляте криля мы не обнаружили метионин и гистидин, а пролин не определяли.

Ниже приведены данные о содержании свободных аминокислот в безбелковых экстрактах.

Аминокислоты					мг/100 г		
Аргинин .						186	
Лизин						83	
Треонии .						42	
Метионин .						10	
Валин						33	
Лейцины .						71	
Фенилаланин						30	
Аланин .						71	
Глютаминовая						20	
Аспарагиновая						71	
Тирозин						37	

Кроме этих аминокислот, на хроматограммах были обнаружены также цистин (очень слабое пятно), пролин (интенсивно окрашенное пятно) и одно не идентифицированное пятно. По своему местоположению на хроматограммах этому пятну соответствуют две аминокислоты: серин и гликокол.

Обращает на себя внимание высокое содержание в белке-коагуляте криля свободного аргинина. В литературе [2] есть указание, что мясо ракообразных (креветки, омары, крабы, речные раки) практически лишено креатина, но в нем находят много аргинина, связанного с фосфором.

вывод

Белок-коагулят криля богат такими незаменимыми аминокислотами, как аргинин, лизин, треонин, лейцины и фенилаланин и отличается высоким содержанием дикарбоновых аминокислот: глютаминовой и аспарагиновой. Мясо ракообразных легко усваивается организмом (лучше казеина) и богато жизненно необходимыми микроэлементами [3].

Из результатов наших исследований, а также из литературных данных следует, что белок-коагулят криля можно рассматривать как высокоценный пищевой продукт.

ЛИТЕРАТУРА

155

ALCONTROL

<u>.</u>

-

 Николаева Н. Е. Аминокислотный состав белков черноморских мидий и устрии. Изв. высш. учеби. завед. Сб. «Пищевая технология», 1965, № 2.
 Borgstrom G. Shellfish protein-nutritive aspects. Fish as Food, v. II, 1962.
 Causeret I. Fish as a source of mineral nutrition, Fish as Food, v. II, 1962.

-