TOM LXIII	Tрудьь Всесоюзного науино-исследовательского института морского рььбного хозяйства и океанографии (ВННРО)	1967

АМИНОКИСЛОТНЫИ СОСТАВ БЕЛКА-КОАГУЛЯТА КРИЛЯ

Н. Е. НИКОЛАЕВА

В лаборатории технологии беспозвоночных и водорослей ВНИРО изучается питательная ценность мяса различных ракообразных. Кроме креветок, лангустов, омаров, мясо которых ценится во всем мире как давно признаңный деликатес, мы исследовали мелкого рачка - криля (Euphausia superba), которым питаются морские млекопитающие и рыбы.

Мясо крупных ракообразных (креветок, крабов, лангустов и омаров) освобождают из панциря вручную или машиной, чаще всего после варки, так как некоторые белки мяса ракообразных в сыром виде полужидкие.

Криль очень нежный и скоропортящийся рачок. Белки его мяса преимущественно полужидкие.

В панцире брюшка криля заключено всего около 0,5 е мяса, которое очень трудно извлечь. Поэтому криль до последнего времени оставался непромысловым объектом.

В первом аитарктическом рейсе научно-поискового судна «Академик Книпович» (1964-1965 гг.) инженер-технолог М. И. Крючкова предложила эффективный способ освобождения мяса криля от хитинового покрова и приготовления из него натурального пищевого белкового продукта; она приготовила пастообразный продукт (без каких-либо пищевых добавок) розовато-оранжевого цвета, обладающий приятным сладковатым вкусом, напоминающим вкус креветок, и названный «Бе-лок-коагулят криля».

Белок-коагулят расфасовали в стеклянные банки, стерилизовали и хранили при температуре $5-7^{\circ} \mathrm{C}$. Его можно добавлять в салаты и другие пикантные кушанья.

Исследовали белок-коагулят одной партии, его химический состав был следующим (в \%) : вода - 73,5 ; жир - 6,9 ; зола - 1,7 ; сахара1,3 ; общий азот - 2,7 ; белок (по разности) - 16,6 . Как видно, в данном продукте находится довольно много сахаров. Известно, что белки ракообразных часто связаны с сахарами, образуя глюкопротеины, которые, по всей вероятности, придают мясу сладковатый вкус. Так, по Боргстрому [2] белки омаров содержат $2,2 \%$ сахаров, представляющих собой в

* Эти анализы выполнены инженером Ю. Г. Вороновой и техниками Л. В. Сысоевой и А. Д. Чумаковой.

основном смесь глюкозы (три части) и фруктозы (восемь частей). Белки краба содержат $2,8 \%$ сахаров, из которых на долю глюкозы приходится четыре части, на долю фруктозы - одна часть.

Аминокислотный состав белков белка-коагулята определяли методом распределительной хроматографии на бумаге. Эта методика, описанная нами раніее [1], предусматривает трех-, четырехразовую обработку исследуемего продукта спиртом с тем, чтобы приготовить для последующего исследования безбелковый экстракт свободных аминокислот продукта и препарат белков, по возможности очищенных от посторонних небелковых веществ.

Белковый препарат, приготовленный из крилевого белка-коагулята, представлял собой сухой светлый поронок розоватого цвета. Выход его составил $17,1 \%$ от веса белка-коагулята. Его химический состав (в $\%$) : вода - 9,6 ; жир - 0,4 ; зола $-5,9$; общий азот $-13,3$; белок (по разногти) - 84,1.

Для определения аминокислотного состава белковые препараты подвергали гидролизу соляной кислотой.

Полученные гидролизаты и безбелковый экстракт использовали для анализа.

Аминокислоты разделяли на одномерных хроматограммах при нисходящем движении растворителей, как описано нами в статье «Аминокислотный состав белков кальмара» (стр. 158 данного сборника). На хроматограммах проявились 14 пятен аминокислот.

Результаты количественного определения аминокислот в белковом препарате, приготовленном из крилевого белка-коагулята, приведены в табл. 1. Для сравнения приведены также данные Боргстрома [2] о содержании некоторых аминокислот в белках бомбейских и тихоокеанских креветок и омаров и некоторых пищевых продуктов (табл. 2).

[^0]$$
\text { Таблица } 2
$$

Аминокислотный состав белков креветок，омаров и некоторых пищевых продуктов

Аминокислота	Бомбейские＊		Тихоокеанские		Пищевые пролукты		
		$\begin{aligned} & \text { Z } \\ & \text { a } \\ & \text { 훙 } \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \text { 器 } \end{aligned}$		鹤	
Лизй	18，5	17，6	9，4	9，5	10.0	10，1	10，1
Аргинин	8，3	7，2	9，0	7，4	13，2	12，6	13，9
Треонин	4，6	5，3	4，1	4，4	2，9	3，3	3，4
Валин ．	4，1	2，9	4，4	4，5		\pm	
Лейцины	19，9	15，6	12，4	12，7	－	－	－
Фенилаланин	14，6	2，7	4，4	4，7	2，5	2，3	2，0
Аланин ．		，	6，0	5，9	2，5	2，3	2，0
Глютаминовая	－	一	17，5	16，9	\cdots	－	－
Аспарагиновая	－	一	11，7	12，3	－	－	
Серин ．	－	－	4，2	4，9	3，3	4，1	3，9
Гликокол	\square	－	4，7	4，6			
Тирозин	1，0	0，8	4，1	4，1	2，3	2，2	2，1
Цистин	1，4	1，5	1，1	1，3	0，7	0，8	0，6
Метионин	4，6	2，2	2，8	3，2	2，0	2，2	2，0
Гистидин	1，6	1，2	1，9	2，1	3，1	3，5	4，0
Триптофан	0，4	0，2	1，0	0，9	1，1	1，1	1，1
Пролин ．．．．．	－－	－	3，7	3，4	1,	－	－

＊Грамм в 100 г белка，пересчитано к 16% азота．
Как видно из табл． 1 и 2，белок－коагулят криля по аминокислотному составу не уступает таким высокоценным пищевым продуктам，как тре－ ска，цыпленок и ракообразные（креветки，омары），а по содержанию не－ которых аминокислот，например трєонина，валина，фенилаланина，гли－ кокола，тирозина，превосходит эти продукты．Следует отметить，что в белке－коагуляте криля мы не обнаружили метионин и гистидин，а про－ лин не опредєляли．

Ниже приведены данные о содержании свббодных аминокислот в безбелковых экстрактах．

Кроме этих аминокислот，на хроматограммах были обнаружены также цистин（очень слабое пятно），пролин（интенсивно окрашенное пятно）и одно не идентифицированное пятно．По своему местоположе－ нию на хроматограммах этому пятну соответетвуют две аминокислоты： серин и гликокол．

Обращает на себя внимание высокое содержание в белке－коагуляте криля свободного аргинина．В литературе［2］есть указание，что мясо ракообразных（креветки，омары，крабы，речные раки）практически ли－

шено креатина, но в нем находят много аргинина, связанного с фосфором.

ВЫІВОД

Белок-коагулят криля богат такими незаменимыми аминокислотами, как аргинин, лизин, треонин, лейцины и фенилаланин и отличается высоким содержанием дикарбоновых аминокислот: глютаминовой и аспарагиновой. Мясо ракообразных легко усваивается организмом. (лучше казеина) и богато жизненно необходимыми микроэлементами [3].

Из результатов наших исследований, а также из литературных данных следует, что белок-коагулят криля можно рассматривать как высокоценный пищевой продукт.

ЛИТЕРАТУРА

1. Николаева Н. Е. Аминокислотный состав белков черноморских мидий и устриц. Изв. высш. учебн. завед. Сб. «Пищевая технология», 1965, № 2.
2. Borgstrom G. Shellfish protein-nutritive aspects. Fish as Food, v. II, 1962.
3. Causeret I. Fish as a source of mineral nutrition, Fish as Food, v. II, 1962.

[^0]: * Анализ выполнен инж. Ю. Г. Вороновой и техниками Л. В. Сысоевой и А. Д. Чумаковой.

